Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters

Language
Document Type
Year range
1.
Comput Biol Med ; 150: 106128, 2022 Sep 25.
Article in English | MEDLINE | ID: covidwho-2093312

ABSTRACT

Epstein-Barr virus (EBV) is widely known due to its role in the etiology of infectious mononucleosis. However, it is the first oncovirus that was identified and has been implicated in the etiology of several types of cancers. Globally, EBV infection is associated with more than 200, 000 new cancer cases and 150, 000 deaths yearly. A prophylactic or therapeutic vaccine targeting tumors associated with EBV infection is currently lacking. Therefore, this study aimed to develop a multiepitope-based polyvalent vaccine against EBV-associated tumors using immunoinformatics approach. The latency-associated proteins (LAP) of three strains of the virus were used in this study. Potential epitopes predicted from the proteins were analyzed and selected based on several predicted properties. Thirty viable B-cell and T-cell epitopes were selected and conjugated using various linkers alongside beta-defensin 3 as an adjuvant and pan HLA DR-binding epitope (PADRE) sequence to improve the immunogenicity of the vaccine construct. Molecular docking studies of the vaccine construct against toll-like receptors (TLRs) showed it is capable of inducing immune response via recognition by TLRs while immune simulation studies showed it could induce both cellular and humoral immune responses. Furthermore, molecular dynamics study of the complex formed by the vaccine candidate and TLR-4 showed that the complex was stable. Ultimately, the designed vaccine showed desirable properties based on in silico evaluation; however, experimental studies are needed to validate the efficacy of the vaccine against EBV-associated tumors.

2.
Chem Zvesti ; 76(2): 785-796, 2022.
Article in English | MEDLINE | ID: covidwho-1653734

ABSTRACT

The ongoing pandemic caused by the severe acute respiratory syndrome 2 (SARS-CoV 2) has led to more than 168 million confirmed cases with 3.5 million deaths as at 28th May, 2021 across 218 countries. The virus has a cysteine protease called main protease (Mpro) which is significant to it life cycle, tagged as a suitable target for novel antivirals. In this computer-assisted study, we designed 100 novel molecules through an artificial neural network-driven platform called LigDream (https://playmolecule.org/LigDream/) using 3-O-(6-galloylglucoside) as parent molecule for design. Druglikeness screening of the molecules through five (5) different rules was carried out, followed by a virtual screening of those molecules without a single violation of the druglike rules using AutoDock Vina against Mpro. The in silico pharmacokinetic features were predicted and finally, quantum mechanics/molecular mechanics (QM/MM) study was carried out using Molecular Orbital Package 2016 (MOPAC2016) on the overall hit compound with controls to determine the stability and reactivity of the lead molecule. The findings showed that eight (8) novel molecules violated none of the druglikeness rules of which three (3) novel molecules (C33, C35 and C54) showed the utmost binding affinity of -8.3 kcal/mol against Mpro; C33 showed a good in silico pharmacokinetic features with acceptable level of stability and reactively better than our controls based on the quantum chemical descriptors analysis. However, there is an urgent need to carry out more research on these novel molecules for the fight against the disease. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s11696-021-01899-y.

3.
Chemicke zvesti ; : 1-12, 2021.
Article in English | EuropePMC | ID: covidwho-1451791

ABSTRACT

The ongoing pandemic caused by the severe acute respiratory syndrome 2 (SARS-CoV 2) has led to more than 168 million confirmed cases with 3.5 million deaths as at 28th May, 2021 across 218 countries. The virus has a cysteine protease called main protease (Mpro) which is significant to it life cycle, tagged as a suitable target for novel antivirals. In this computer-assisted study, we designed 100 novel molecules through an artificial neural network-driven platform called LigDream (https://playmolecule.org/LigDream/) using 3-O-(6-galloylglucoside) as parent molecule for design. Druglikeness screening of the molecules through five (5) different rules was carried out, followed by a virtual screening of those molecules without a single violation of the druglike rules using AutoDock Vina against Mpro. The in silico pharmacokinetic features were predicted and finally, quantum mechanics/molecular mechanics (QM/MM) study was carried out using Molecular Orbital Package 2016 (MOPAC2016) on the overall hit compound with controls to determine the stability and reactivity of the lead molecule. The findings showed that eight (8) novel molecules violated none of the druglikeness rules of which three (3) novel molecules (C33, C35 and C54) showed the utmost binding affinity of −8.3 kcal/mol against Mpro;C33 showed a good in silico pharmacokinetic features with acceptable level of stability and reactively better than our controls based on the quantum chemical descriptors analysis. However, there is an urgent need to carry out more research on these novel molecules for the fight against the disease. <h4>Supplementary Information</h4> The online version contains supplementary material available at 10.1007/s11696-021-01899-y.

4.
J Genet Eng Biotechnol ; 19(1): 16, 2021 Jan 25.
Article in English | MEDLINE | ID: covidwho-1045589

ABSTRACT

BACKGROUND: The World Health Organization has recently declared a new coronavirus disease (COVID-19) a pandemic and a global health emergency. The pressure to produce drugs and vaccines against the ongoing pandemic has resulted in the use of some drugs such as azithromycin, chloroquine (sulfate and phosphate), hydroxychloroquine, dexamethasone, favipiravir, remdesivir, ribavirin, ivermectin, and lopinavir/ritonavir. However, reports from some of the clinical trials with these drugs have proved detrimental on some COVID-19 infected patients with side effects more of which cardiomyopathy, cardiotoxicity, nephrotoxicity, macular retinopathy, and hepatotoxicity have been recently reported. Realizing the need for potent and harmless therapeutic compounds to combat COVID-19, we attempted in this study to find promising therapeutic compounds against the imminent threat of this virus. In this current study, 16 derivatives of gallic acid were docked against five selected non-structural proteins of SARS-COV-2 known to be a good target for finding small molecule inhibitors against the virus, namely, nsp3, nsp5, nsp12, nsp13, and nsp14. All the protein crystal structures and 3D structures of the small molecules (16 gallic acid derivatives and 3 control drugs) were retrieved from the Protein database (PDB) and PubChem server respectively. The compounds with lower binding energy than the control drugs were selected and subjected to pharmacokinetics screening using AdmetSAR server. RESULTS: 4-O-(6-galloylglucoside) gave binding energy values of - 8.4, - 6.8, - 8.9, - 9.1, and - 7.5 kcal/mol against Mpro, nsp3, nsp12, nsp13, and nsp15 respectively. Based on the ADMET profile, 4-O-(6-galloylglucoside) was found to be metabolized by the liver and has a very high plasma protein binding. CONCLUSION: The result of this study revealed that 4-O-(6-galloylglucoside) could be a promising inhibitor against these SAR-Cov-2 proteins. However, there is still a need for further molecular dynamic simulation, in vivo and in vitro studies to support these findings.

SELECTION OF CITATIONS
SEARCH DETAIL